A Convergent Mixed Method for the Stokes Approximation of Viscous Compressible Flow

نویسندگان

  • KENNETH H. KARLSEN
  • TRYGVE K. KARPER
چکیده

We propose a mixed finite element method for the motion of a strongly viscous, ideal, and isentropic gas. At the boundary we impose a Navier–slip condition such that the velocity equation can be posed in mixed form with the vorticity as an auxiliary variable. In this formulation we design a finite element method, where the velocity and vorticity is approximated with the divand curlconforming Nédélec elements, respectively, of the first order and first kind. The mixed scheme is coupled to a standard piecewise constant upwind discontinuous Galerkin discretization of the continuity equation. For the time discretization, implicit Euler time stepping is used. Our main result is that the numerical solution converges to a weak solution as the discretization parameters go to zero. The convergence analysis is inspired by the continuous analysis of Feireisl and Lions for the compressible Navier–Stokes equations. Tools used in the analysis include an equation for the effective viscous flux and various renormalizations of the density scheme.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Composite Finite Difference Scheme for Subsonic Transonic Flows (RESEARCH NOTE).

This paper presents a simple and computationally-efficient algorithm for solving steady two-dimensional subsonic and transonic compressible flow over an airfoil. This work uses an interactive viscous-inviscid solution by incorporating the viscous effects in a thin shear-layer. Boundary-layer approximation reduces the Navier-Stokes equations to a parabolic set of coupled, non-linear partial diff...

متن کامل

A Convergent Nonconforming Finite Element Method for Compressible Stokes Flow

We propose a nonconforming finite element method for isentropic viscous gas flow in situations where convective effects may be neglected. We approximate the continuity equation by a piecewise constant discontinuous Galerkin method. The velocity (momentum) equation is approximated by a finite element method on div–curl form using the nonconforming Crouzeix– Raviart space. Our main result is that...

متن کامل

Dgfem for the Numerical Solution of Compressible Flow in Time Dependent Domains and Applications to Fluid-structure Interaction

Abstract. The paper is concerned with the simulation of inviscid and viscous compressible flow in time dependent domains. The motion of the boundary of the domain occupied by the fluid is taken into account with the aid of the ALE (Arbitrary Lagrangian-Eulerian) formulation of the Euler and Navier-Stokes equations describing compressible flow. They are discretized by the discontinuous Galerkin ...

متن کامل

On Stationary Solutions for 2 - D Viscous Compressible Isothermal Navier-Stokes Equations

We consider the Navier–Stokes equations for compressible isothermal flow in the steady two dimensional case and show the existence of a weak solution in the case of periodic and of mixed boundary conditions.

متن کامل

Convergence of a mixed method for a semi-stationary compressible Stokes system

We propose and analyze a finite element method for a semi– stationary Stokes system modeling compressible fluid flow subject to a Navier– slip boundary condition. The velocity (momentum) equation is approximated by a mixed finite element method using the lowest order Nédélec spaces of the first kind. The continuity equation is approximated by a standard piecewise constant upwind discontinuous G...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009